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Nonlinear antennas combine advances in nonlinear dynamics,
active antenna design, and analog microelectronics to generate
beam steering and beam forming across an array of nonlinear
oscillators. Nonlinear antennas exploit two phenomena typi-
cally shunned in traditional designs: nonlinear unit cells and
interelement coupling. The design stems from nonlinear coupled
differential equation analysis that by virtue of the dynamic control
is far less complex than the linear counterparts by eliminating
the need for phase shifters and beam forming computers. These
advantages arise from incorporating nonlinear dynamics rather
than limiting the system to linear quasisteady state operation.
A theoretical framework describing beam shaping and beam
forming by exploiting the phase, amplitude, and coupling dy-
namics of nonlinear oscillator arrays is presented. Experimental
demonstration of nonlinear beam steering is realized using analog
microelectronics.

Keywords—Active antenna, analog VLSI, beam forming, beam
steering, coupled oscillator array, nonidentical oscillators, non-
linear dynamics.

I. INTRODUCTION

Nonlinear antenna technology relies on array processing
at microwave and millimeter-wave frequencies [1]. Active
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antenna design employs diodes, transistors, or nonlinear cir-
cuits distributed over a plane surface that interact with the
free-space beams at the plane of radiation collection. Active
antennas differ fundamentally from the passive antenna in
two ways: the unit cells are nonlinear, and signal processing
(dynamic interactions between cells) is done via mutual cou-
pling. In passive antenna arrays, which employ some type
of multipole as the unit cell, prescribing the geometry of the
array controls the radiation pattern. Traditional array antenna
design has not devoted significant effort toward deliberately
controlling the mutual coupling between radiators.

Active antennas are inherently nonlinear dynamic systems
that can generate a number of unusual nonlinear phenomena
[2]–[4]. Over the last several years, an explosion of new
analysis and control techniques for manipulating nonlinear
dynamics has emerged [5]. New nonlinear techniques are
especially well suited for active antenna design. Current
array design practice strives to suppress any interelement
coupling while minimizing noise [6]. However, the interplay
between coupling and noise can be “tuned” to achieve
optimal performance. This is done in a variety of ways
in nonlinear devices by adjusting the coupling strength,
changing the number of elements in the array, dynamically
controlling the device potential, introducing spatial disorder
into the array, or optimizing the input noise. These nontradi-
tional design approaches have already been experimentally
verified in prototype antennas.

Generically, any active antenna design is an ensemble
of coupled nonlinear devices. The dynamics of coupled
nonlinear arrays has been the subject of intense study in the
last decade, particularly superconducting oscillator arrays
[7], [8]. Fortuitously, the equation that governs the motion of
exotic superconducting oscillators also describes the analog
phase-locked loop (PLL) [9], one of the building blocks in
active antennas. Therefore, advances in understanding the
dynamics of superconducting oscillator arrays transfer to
active antenna design. Of particular promise is the role of
temporal and spatial fluctuations in synchronizing oscillator
arrays.
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During the past decade, insight into the dynamics of
coupled nonlinear systems has produced a number of
useful architectures. This work has shown that nonlinear
arrays offer simple methods for phase control among array
elements and hence beam scanning capability. Numerous
X-band antenna experiments verify the theory and have
demonstrated the practicality of the techniques [10]. A key
experimental result demonstrates that exploiting mutual
coupling can substantially reduce the physical size of an
antenna [11].

Using coupled nonlinear elements is a radical departure
from traditional antenna design, but the performance goals
remain the same: high antenna gain, excellent control over
the beam shape, and fast sweep-time of the array.

II. DYNAMICS OF DISORDER

When a collection of limit cycle oscillators is coupled to
its nearest neighbor, frequency-locking between oscillators
can occur. A phase gradient can be created across the chain
by tuning the free-running frequencies of the boundary el-
ements. Nearest-neighbor interactions transmit the change
in phase across the array, forming a constant gradient that
allows control over the propagation of the wave front (see
Fig. 1). Areas in which this could play an important role are
sensor arrays, beam steering, and beam-forming problems.
As a first step toward applying these results to the beam
steering problem, a one-dimensional (1-D) chain of analog
PLLs is simulated. The PLLs are linearly coupled to their
nearest neighbors and each element receives the globally ap-
plied signal [12]. The equation of motion is

(1)

where is the phase error of theth PLL in the chain,
is the natural frequency of theth PLL, and is the

frequency of the global ac driving signal. The over-dot no-
tation represents a derivative with respect to time. Spatial
disorder is introduced through variations in the natural fre-
quency of each PLL. When all the elements are identical
( ) the resulting motion is chaotic, i.e., no long-term
frequency or phase coherence. If spatial disorganization is
introduced into an array, then ordered motion emerges. The
center and bottom panels demonstrate different schemes for
spatial variation. While random spatial disorder produces pe-
riodic motion, the highest degree of coherence occurs when
every other element in the array is spatially disordered.1 Pre-
vious experiments by York and coworkers employing a chain
of microwave oscillators provide evidence that spatial dis-
order does indeed control the phase matching between ele-
ments.

1A fascinating analogy to nonidentical oscillator tuning occurs by intro-
ducing temporal disorder, rather than spatial disorder. The dynamical prop-
erties of nonlinear oscillator arrays driven by weak deterministic signals and
noise constitute an active area of research. The interested reader should con-
sult A. R. Bulsara, L. Gammaitoni “Tuning in to Noise,”Physics Today, p.
39, March 1996, for an excellent introduction to noise induced coherence.

Fig. 1. Time evolution (horizontal) of a chain of 64 locally
coupled analog PLLs, demonstrating how tuning spatial disorder
can improve frequency and phase locking. Blue and red colors
code angular velocities of the spatiotemporal evolution of array. In
(a), the array of identical oscillators evolve with chaotic motion.
Panel (b) illustrates the effect of randomly changing the natural
frequency of every PLL in the chain by upwards of 20%. This
converts the motion from chaotic to periodic (period 2), but with a
large phase dispersion. Finally, sequence (c) illustrates the effect of
disordering every other element by 50% (�! = 0:5). This results
in periodic motion, but the phase dispersion is much sharper than in
the previous case. The parameters used in the figure are
 = 0:75,
A = 0:4, ! = 1:0, ! = 0:2, and� = 0:5.

III. T HEORY OFNONLINEAR ANTENNA DYNAMICS

In this section a model of a 1-D coupled, nonlinear oscil-
lator array is introduced. Later sections describe how to ad-
just various system parameters for beam shaping and beam
steering.

The system under consideration [Fig. 2(a) and (b)] is a 1-D
chain of voltage-controlled oscillators, each driving a sepa-
rate patch antenna. Dominant interactions are taken to occur
between neighboring elements, either through radiative or
transmission line coupling, i.e., nearest-neighbor coupling is
assumed.

Equations describing the amplitude and phase dynamics
of the array elements are given by (2) and (3) [13]–[15]

(2)

(3)

where is the natural frequency of theth element,
and are the coupling strength and coupling phase, re-
spectively. As the periphery elements only possess a single
nearest neighbor, the boundary conditions are given by

. Extending this model to encompass
two-dimensional (2-D) rectangular arrays is relatively
straightforward: a typical element would then be influenced
by its four nearest neighbors, leading to four, rather than
two, coupling terms.

This model possesses four parameters which may be used
to control the array’s dynamics: 1) the coupling strength;
2) the coupling phase; 3) the oscillator natural frequencies

;and 4) the oscillator amplitude parameters. The and

MEADOWS et al.: NONLINEAR ANTENNA TECHNOLOGY 883



Fig. 2. (a) Nonlinear active antenna producing beam steering
without phase shifters. The array is composed of voltage-controlled
oscillators (VCOs) tied to simple patch radiators. Each active
element is electrically coupled via a strip-line to a nearest neighbor
in the array. By adjusting the varactor bias, the free running
frequency of each oscillator can be altered. Beam steering is
accomplished by changing the bias on the two boundary elements
only. (b) Equivalent circuit schematic of a 1-D array of nonlinear
oscillators with transmission-line coupling. The light gray box
in the coupling line represents, in general, some form of RLC
network. Although a parallel RLC combination in the oscillators
has been assumed here, a series RLC has been shown to lead to a
similar set of dynamical equations.

define the oscillator amplitude and frequency in the ab-
sence of coupling .

A. The Phase Model

Unless otherwise stated, the following two simplifying as-
sumptions will be invoked: the amplitude dynamics evolve
on a much faster time scale than the phase dynamics and
the oscillator amplitudes all rapidly settle down to a common
value, i.e., . Thus, having specified the amplitudes,
the oscillators will be described solely by their phases

(4)

where the boundary conditions become

(5a)

(5b)

Moreover, note that the assumption of identical ampli-
tudes effectively decouples the phase dynamics from the am-
plitude dynamics. Equation (4) will be referred to as the
“phase model.” Interestingly, similar equations have arisen in
models of solid-state laser arrays, Josephson junction arrays,
and PLL arrays as well as biological systems such as eel loco-
motion and the synchronized flashing of fireflies [16]–[21].

Whether dealing with the phase model or the full equa-
tions, the following sections of theoretical analysis share a
common two-step approach. First, establish the existence of
the solutions by substituting the desired solutions into the dy-
namical equations. From that, determine how the accessible
parameters should be adjusted. Second, establish under what
conditions those solutions are stable, i.e., physically realiz-
able states of the coupled oscillator array.

For beam steering, one seeks to establish a spatially uni-
form phase gradient across the array; in other words, the
elements should be phase-locked such that the phase dif-
ference between neighboring oscillators has the same value
throughout the array. Mathematical solutions to the phase
model are sought having the following form:

(6)

In order for this to be a solution of the phase model equa-
tions, the natural frequencies must satisfy the following rela-
tions:

(7a)

(7b)

(7c)

In the case of “static” beam steering, i.e., when the
main beam should point in a fixed direction, these conditions
imply that the natural frequencies of only the two end ele-
ments need to be manipulated. In essence, two dc bias volt-
ages have replaced phase shifters. Alternatively, continu-
ously scanning the beam requires adjusting every
oscillator’s natural frequency in a time-dependent manner.
This still proves advantageous, as a simple dc control net-
work replaces the complex RF phase-control circuitry.

Having established the existence of the desired solutions,
the question of their stability must now be considered. To be
a viable beam steering technique, the array dynamics should
naturally evolve toward the spatially uniform phase gradient
state. By perturbing the desired solutions,

where , a set of linear, ordinary differential
equations (ODEs) describing the evolution of such perturba-
tions can be constructed

(8)

where

(9a)

(9b)

(9c)

and

(10)
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(a) (b) (c) (d)

Fig. 3. Time evolution (vertical) of a nonlinear active antenna array. These figures demonstrate
beam steering for various coupling and phase gradient values for a seven-element, 1-D array. Plots (a)
and (b) correspond to zero coupling phase (� = 0), while plots (c) and (d) represent a nonzero
coupling phase (� = �=4). The phase gradients are (a)� = 0, (b) � = �=3, (c) � = ��=3, (d)
� = �=2; the same set of random initial conditions was used in each. Stability analysis results are
consistent with the observed transient effects.

A stable solution is one where the perturbations away from
that state die out, i.e., .2 The eigenvalues of this set of
linear ODEs describe how the various perturbation “modes”
grow or decay; a stable solution is one where the real parts of
the nonzero eigenvalues are all negative. In the case
of “static” beam steering, these eigenvalues can be computed
analytically [22], [23]

(11)

for where . Analogous
results can be written down in the case of time-dependent
phase gradients, [22], [23]. Similar results have been
obtained for an approximate, continuous array model as op-
posed to the inherently discrete element case being consid-
ered here [24], [25].

Establishing the existence and stability of the desired
states of the system constitutes a complete solution to the
beam steering problem. While these results were based on
a simplified model, they provide significant insight into the
capabilities of this novel beam steering technique. Some
particularly interesting observations include the following.

1) The stability of a given beam steering state depends
solely on the sign of . Consequently, a bifurcation
does not arise from the operating frequencies or the
number of elements .

2) There is a limited range of realizable phase gradients.
Assuming, for definiteness, that , the stable
phase gradients are restricted to . For
half-wavelength spacing between array elements, this
amounts to the ability to scan the main beam 30off
broadside. However, methods for extending this range
to a full field of view have been proposed [26].

3) The eigenvalues (Lyapunov exponents) are propor-
tional to the coupling strength. This means the greater
the interaction between elements, the more rapidly the
array will settle down to the desired state; conversely,

2As we are dealing with periodic orbits, there is a certain set of pertur-
bations that leave one on the orbit, amounting to a time translation. Such
perturbations do not render the state unstable.

it will take longer to establish the uniform phase gra-
dient across an array of weakly interacting elements.

4) As the number of elements increase, it takes longer for
the array to reach the desired state, a consequence of
the diffusive nature of the nearest-neighbor coupling.

Fig. 3 illustrates this beam steering method for the case of
a seven-element array.

Although this analysis has focused on 1-D arrays, exten-
sion to rectangular 2-D arrays for steering in az-
imuth and elevation has been achieved [22], [23], [25]. In
particular, it was found that steering is still accomplished by
manipulation of the periphery elements alone, reducing the
number of controls from to .

Also, the case of sinusoidal scanning has been addressed
[22], [23]. For that case, a couple of interesting results
emerged: 1) the technique was robust with respect to the
scanning (sweep) frequency; in fact, the desired state was
stable regardless of the scan rate and 2) a greater range
of stable phase gradients occurs, increasing from90 to

138 .

B. Difference Pattern (Monopulse) Beam Steering

Difference patterns are key for tracking targets such as
individual global positioning satellites or maintaining the
placement of a null over a jammer. To produce a difference
pattern, a slightly different phase distribution is required. In
particular, for a 1-D array, there must be aphase difference
between the two halves. Thus, the desired solutions are now

(12)

where

(13)

Obviously, the sum and difference pattern solutions are
very simply related, i.e., ; yet, the beam
steering scheme, as it stands, does not allow for the existence
of the solutions. Consequently, the array could not pro-
duce such an intensity pattern.
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However, it can be shown [27] that through a simple modi-
fication to the center-coupling link alone, a difference pattern
may be established and controlled in the same manner as the
sum pattern. To allow for such a modification, a variant of the
phase model is introduced where the coupling phases can be
manipulated

(14)

Substitution of the desired difference pattern solution
leads to

(15)

where denotes the standard Dirac delta function, i.e.,

(16)

A careful inspection of these equations reveals a tremen-
dous similarity to those encountered in the sum pattern
problem. In fact, with the following choice of coupling
phases

otherwise

(17)

they become identical to those of the sum pattern analysis.
Fig. 4 illustrates steering a monopulse beam.

In addition, incorporating these coupling phases into the
linear stability analysis of the difference pattern solutions

(18)

where

(19a)

(19b)

(19c)

again leads to identical stability matrices for the sum and
difference pattern states.

Therefore, introducing a phase shift in the coupling
phase of the center link produces a difference pattern that
can be steered in the same fashion as the sum pattern (i.e., by
adjusting the natural frequencies of the periphery elements
alone) and whose stability properties (settling time, bifur-
cation points, scan range) are identical to those of the sum
pattern. As a result, it is possible to switch between the sum
and difference patterns of the same coupled oscillator array.
In passing, it is noted that rather than alter the coupling
phase, reversing the sign of the coupling strength of the
center-coupling link (i.e., ) could be used with
identical results. Whether one chooses to adjust the coupling
phase or coupling strength will depend on the feasibility of
the particular approach.

Fig. 4. Generating and steering a difference pattern for an
18-element, 1-D array. By a simple modification to a single
coupling link, the beam steering technique developed for the sum
pattern problem could also be used to steer a difference pattern.
This figure was obtained via numerical integration of the dynamical
equations with random initial conditions. The following parameters
were used:N = 18, � = �=3, k = 1, and� = 0.

C. Coupling Phase Beam Steering Method

An alternative method of beam steering can be formulated
wherein the coupling phases rather than the oscillator natural
frequencies are manipulated.

As phase-locked solutions are of interest, the synchronized
oscillators will, by definition, possess a common frequency.
Together with the condition of a spatially uniform phase gra-
dient, the phase model (4) becomes

(20a)

(20b)

(20c)

These relations specify the coupling phases

otherwise

(21)

Two points of interest arise from this result: 1) the cou-
pling network between the end elements and interior ele-
ments must be nonreciprocal and 2) the simple linear rela-
tionship between the coupling phase and desired phase gra-
dient. A similar approach has been previously documented,
although that work did not address stability [28].

A linear stability analysis leads to the following set of cou-
pled differential equations for the perturbations:

(22)

where and . A closed-form analytic
solution for the eigenvalues has yet to be obtained. However,
apart from the overall coefficient of the and equations,

886 PROCEEDINGS OF THE IEEE, VOL. 90, NO. 5, MAY 2002



the above set of linear differential equations is very similar
to the following:

(23)

whose eigenvalues are readily obtained

(24)

for . These eigenvalues provide a good
estimate of the true values, especially as the number of ele-
ments becomes large.

Whether this manner of beam steering is preferred over
that based on manipulating the oscillator natural frequencies
depends on the application or implementation requirements;
regardless, the possibility of two means to the same end pro-
vides the engineer with greater flexibility in the system’s de-
sign.

D. Amplitude Dynamics and Sidelobe Reduction

As evidenced by their radiation patterns, phase model an-
tennas generate relatively high sidelobe levels (13 dB down
from the main beam). This is to be expected since the as-
sumption of identical amplitudes implies a uniformly illumi-
nated array. However, for certain applications, such a side-
lobe level is unacceptable and must be significantly reduced.

The conventional solution is to apply weighting (spatial
tapering) of the element amplitudes. Several such weighting
schemes exist, among those being cosine-on-a-pedestal,
Dolph–Chebyshev, Taylor and Villeneuve. This section
demonstrates how the oscillator amplitude dynamics can be
controlled to achieve a desired amplitude profile across the
array while the phase dynamics are used for beam steering.
Moreover, note that the simplifying assumptions leading
to the phase model are not invoked here.In particular, the
amplitude and phase dynamics are allowed to evolve on
similar time scales and the oscillator amplitudes now settle
down to some nonuniform state specified by the weighting
scheme used.

By relaxing the constraints on the amplitude dynamics,
new opportunities are open to allow custom beam shaping,
sidelobe suppression, and a possible trade between coupling
and reduced array size [11]. Although extension to 2-D ar-
rays is straightforward, simulation results are shown for 1-D
oscillator arrays only.

To facilitate obtaining the requisite parameter values,
the real, ordinary differential equations (2) and (3)
are expressed as a set of complex ODEs by defining

(25)

Solutions resulting in steered, low-sidelobe beam patterns
are of the following form:

(26)

where the and are the desired amplitude weightings and
phase gradient, respectively. Substitution into the above com-
plex differential equations leads to a set of complex algebraic

Fig. 5. Exploiting the amplitude dynamics of a seven-element
array for sidelobe reduction. The solid lines denote the intensity
pattern produced by Villeneuve amplitude tapering applied to
a conventional, uncoupled array and the red circles represent
the beam pattern of the coupled oscillator array. As this figure
illustrates, the coupled oscillator array can be made to achieve the
same performance as a conventional array design. The following
parameters were used:N = 7, � = 2�=5, k = 1 and� = 0. A
Villeneuve weighting scheme was chosen to produce the�40-dB
sidelobes; to this end,n = 4 and a maximum value ofp = 10

were utilized.

equations from which satisfying the real and imaginary parts
defines how the and should be adjusted

(27)

(28)

where and . Note
that, as expected, for the uniform amplitude distribution the
natural frequency conditions reduce to those derived from the
phase model. Fig. 5 illustrates a Villeneuve amplitude taper
across a seven-element 1-D array of van der Pol oscillators.
In Fig. 6, simultaneous beam steering and beam forming are
demonstrated in a 17-element van der Pol array.

The linear stability analysis is most readily carried out
through the original real differential equations (2) and
(3). Perturbing the desired solution ,

where , one arrives at the
problem of diagonalizing a stability matrix possessing a com-
plicated structure.

Unlike the progress made in the phase model cases, this
stability matrix’s complexity and sensitive dependence on
the weighting scheme chosen (including the desired side-
lobe level), makes it seem unlikely that a closed-form an-
alytic expression for the Lyapunov exponents could be ob-
tained. However, numerical computation of the eigenvalues
is straightforward. From such an approach, it seems that, in
general, simultaneous beam shaping and beam steering re-
sults in a smaller range of stable phase gradient values. To
what extent this reduction is attributable to the comparable
time scales in the amplitude and phase dynamics as opposed
to the nonuniformity in amplitudes is, at this time, an open
question.

IV. RECEIVER BEAM FORMING USING NONLINEAR

OSCILLATORS

In contrast to the previous section, this architecture is a
hybrid approach that retains the traditional antenna beam
forming elements, but inserts a coupled nonlinear oscillator
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Fig. 6. Simultaneous sidelobe reduction and beam steering.
Amplitude shaping does not come without cost. For the coupled
nonlinear oscillators to encompass both the generation of
low-sidelobe beam patterns and beam steering the parameter
adjustments are more complicated; all elements must be
manipulated. However, these parameter changes are via dc control
line voltages to active antenna elements. This eliminates any
RF control circuitry found in traditional phased array antennas.
The following parameters were used:N = 17, k = 1, and
� = 0. Again,�40-dB sidelobes were produced via a Villeneuve
weighting scheme wheren = 9 and the maximump = 10. The
main beam was sinusoidally scanned between��=3.

Fig. 7. Nonlinear narrow-band beam former. The hybrid
architecture relies on the synchronization of the array of nonlinear
oscillators to distinguish signals from clutter received from the
linear front-end.

array to perform narrow-band beam forming for phased array
receivers. A block diagram of this beam former is shown in
Fig. 7.

The array of nonlinear oscillators is tuned so that the state
in which the oscillators are phase-locked to the incident
signal and each other exists only for plane waves incident
within the main beam of the array. For waves outside the
main beam, this synchronization does not occur and the
individual oscillators are no longer phase-locked to the
incident signal. Rather, they oscillate primarily at or near
the average of their natural frequencies. These different
dynamical regimes, not present in conventional linear beam
forming, enable main beam and sidelobe signals to be
distinguished on the basis of frequency.

A. Receiver Elements

The first elements in receiver block diagram are the sen-
sors ( ), e.g., hydrophones, antennas, etc., whose responses
are assumed to be linear and have spacing. Denoting the
phase difference between adjacent sensor elements by, a

plane wave with wave numberincident at an angle rela-
tive to broadside will yield

(29)

where is the steering angle of the array. Beam steering
is accomplished as in conventional beam formers either via
the insertion of delays to the sensor outputs or by phase
shifters. Separate beams will be formed in parallel requiring
one channel per beam.

The (delayed) output of each sensor,, is input as a
driving force, , for its respective nonlinear oscillator
whose state is denoted by. The components of the state
vector may be taken as the various voltages describing
the circuit dynamics. The dynamics of each oscillator is gov-
erned by the system of nonlinear ordinary differential equa-
tions of the form

(30)

where is a nonlinear function of . The parame-
ters are chosen so that, when uncoupled, each oscillator

will undergo oscillations at its natural frequency. The
second term on the right-hand side represents coupling be-
tween elements where is the strength of the coupling from
element to element . In the case of narrow-band signals, the
forcing term, , can be considered to be a slowly modu-
lated function around the carrier frequency,, corresponding
to the incident wave number.

The outputs of the nonlinear oscillator array are summed
and then input to a matched filter. The outputs are summed
according to

(31)

where is a linear function of one or more of the com-
ponents of . The weights can be used to taper the array
if so desired. After forming a power spectrum, the matched
filter then selects the frequency component of interest. Dis-
criminating between signals incident on the main beam and
sidelobes is discussed below. Note that if need becan be
demodulated prior to the downstream signal processing. It is
also possible to have alternatives to a matched filter for the
downstream signal processing.

B. Array Dynamics

For simplicity, assume that the array is steered to broadside
( ) in the following description of the array dynamics.
A monochromatic plane wave of frequency, wave number

, and amplitude is taken to be incident upon the array
at direction . The parameters or the coupling strengths

can be set so that when the phase lag between oscilla-
tors is less than a certain critical phase lag, , the
array synchronizes and oscillates at the incident frequency

. By (29), this phase lag condition is equivalent to a limita-
tion on the angle of incidence, . When the phase lag
exceeds , there is no synchronization with the incoming
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signal. Instead, the individual oscillators oscillate at or near
the average or compromise frequency,, of their natural fre-
quencies and the phase relationships between them are not
constant. A signal incident within the main beam, ,
has a power spectrum centered around the plane wave fre-
quency of interest, whereas a signal incident in the sidelobes,

, has a spectrum distributed primarily aroundwith
side peaks corresponding to the nonlinear mixing between
the incident and natural frequencies. Thus, a frequency-do-
main matched filter can readily determine whether a signal
is incident in the main beam or the sidelobes. This is not the
case for linear beam forming where both main beam and side-
lobe signals cause the array to respond at the signal frequency

, and so frequency cannot be used to discriminate them. In
order for the dynamics to play out as just described the nat-
ural frequencies must not be too disparate from each other
or the signal frequency .

A numerical simulation of the response of the nonlinear
oscillator array to an incident narrow-band signal, and a
system of nonlinear oscillators with nearest-neighbor
coupling was simulated. The dynamics obeyed by each os-
cillator were chosen to be that of a forced, weakly nonlinear
van der Pol oscillator [29]–[33]

(32)

where is a complex quantity describing the state of theth
oscillator, is the excitation coefficient, is the coupling co-
efficient, , and are the input signal frequency and phase,
and is a complex amplitude factor which can allow for
slow changes (relative to the oscillation period) in the mag-
nitude or phase of the incoming signal. Free-end boundary
conditions are used so that the first and last elements obey
(33a) and (33b), respectively. Note that these equations are
in dimensionless form

(33a)

(33b)

For the following results, the delays have been set to zero
so that the array is steered to broadside. Fig. 8 shows the sim-
ulation results for a beam former with eight elements in re-
sponse to an incoming monochromatic plane wave,

, incident just off the beam axis.
The frequency of the input signal is and the oscil-
lator natural frequencies were all taken to be identical so that

. The phase difference between adjacent ele-
ments is radians, which corresponds to an angle
of incidence of for half-wavelength spacing. The
input signals (the real part) to each of the eight oscillators
are shown in the top panel and the phase difference between
inputs can be seen in the offset of the curves. The output of
each of the oscillators (taking the real part of) is shown
in the middle panel. The oscillators start out with random
initial conditions but they quickly synchronize and maintain
this synchronization, as can be seen by the constant phase

Fig. 8. Response of oscillator array to a main beam signal. (a)
Inputs to oscillators. (b) Oscillator outputs. (c) Input frequency
(dashed) and output frequency (solid). The signal parameters are

 = 1:2; a = 0:25; �' = 0:2. The oscillator parameters are
� = 1:0; ! = 1:0; � = 2:0.

Fig. 9. Response of oscillator array to a sidelobe signal. (a) Inputs
to oscillators. (b) Oscillator outputs. (c) Input frequency (dashed)
and output frequency (solid). The parameters are the same as in the
previous figure except�' = 0:5.

difference between curves. Note that this phase difference is
less than for the input signals, which enables the main beam
of the nonlinear beam former to have a flatter response than
the equivalent linear beam former (see Fig. 10). The bottom
panel shows the frequency of the input and output as a func-
tion of time where the array output is given by

(34)

After a brief transient, the output frequency rises to the
input frequency. Since the output remains synchronized, this
signal would be classified as being in the main beam of the
nonlinear oscillator beam former. A remark concerning the
signal amplitude is in order here: the amplitude
was chosen to be above the threshold for oscillations required
for synchronization. This threshold is given by
as can be shown from consideration of the phase equations
corresponding to (32) and (33).
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(a) (b)

Fig. 10. (a) Response of nonlinear beam former as a function
of angle of incidence for an array steered to broadside (solid)
compared with response of linear beam former (dashed). (b)
Standard deviation of synchronization angle. Parameters are the
same as for the previous figures except�' was varied between
0 and 2.7.

Fig. 9 shows the beam former dynamics in response to a
signal that lies in the sidelobe of the nonlinear oscillator beam
former. The phase difference between the inputs to adjacent
oscillators is corresponding to an angle of inci-
dence of assuming half-wavelength spacing. All
other parameters are the same as in Fig. 8. The input sig-
nals shown in the top panel have a wider spacing between
them than in Fig. 8 due to the larger phase difference. The
middle panel shows the eight oscillator outputs, which, as can
clearly be seen, do not remain synchronized, i.e., the phase
difference between outputs changes with time. In the bottom
panel, the frequency of the output does not match the input
signal frequency, rather, it oscillates around the natural fre-
quency with a frequency of . Accordingly, this
signal would be classified as being outside the main beam of
the nonlinear oscillator beam former. However, the angle of
incidence of is within the main beam of the equiva-
lent untapered eight-element linear beam former whose first
null is located at 14.5. This indicates the improved resolu-
tion possible with the nonlinear oscillator beam former.

Fig. 10(a) shows the response of the nonlinear oscillator
beam former to a fixed amplitude plane wave signal as
the angle of incidence is varied (assuming half-wavelength
spacing between elements). The array is steered to broad-
side. The response is found from the output power spectrum
at a given angle of incidence by calculating the power
contained in a small interval around the input frequency

and then normalizing so that the response at is
equal to one (0 dB on the plot). Also shown is the beam
pattern that would be produced by the equivalent untapered
conventional linear beam former. It can be seen that the
nonlinear oscillator beam former possesses a narrower and
flatter main beam and lower sidelobe levels than does the
conventional beam former. Note, however, that the response
of the nonlinear oscillator beam former to a given signal
will depend nonlinearly on its amplitude and the presence

of other signals. The sharp corner on the main beam of the
nonlinear oscillator beam pattern can identify the critical
angle of incidence, above which the coupled oscillator
array will not synchronize. It is approximately 5, which
corresponds to a critical phase difference of
radians. This can be seen more directly in Fig. 10(b), where
the standard deviation of the synchronization angleis
plotted. is defined by

(35)

where . If the oscillators always have constant
phase differences with each other, thenwill be constant and
its standard deviation will be zero. If the oscillators are not
phase-locked, will vary over time and its standard deviation
will be nonzero. So Fig. 10(b) clearly shows the abrupt loss
of synchronization at about 5.

Results obtained are similar to those above for ampli-
tude modulated and linear frequency modulated signals
provided that the threshold condition is not violated. There
remains much to be investigated before the utility of this
beam-forming concept can be assessed, particularly with
regards to its performance in the presence of noise and
interference.

V. EXPLOITING MICROELECTRONICS IN THESTUDY OF

NONLINEAR ACTIVE ANTENNAS

A. Modeling Nonlinear Antenna Dynamics UsingVLSI

A common thread throughout this research is the applica-
tion of recently developed analytical and experimental tools
toward the study and control of nonlinear systems. Analog
microelectronics is an effective tool for examining both the
physics and engineering questions that arise in coupled non-
linear arrays. Analog very large scale integration (VLSI)
provides the dynamicist with a flexible and low-cost tech-
nology for the construction of large-scale nonlinear arrays.
The ability to place thousands of individual elements, ca-
pable of computing a complicated function or representing
a dynamical nonlinear system, in a single low-cost and com-
pact device is a powerful experimental tool [34].

Even though VLSI designs often incorporate digital
components, it is the abandonment of the many layers of
abstraction involved in digital design that empowers the
VLSI engineer. The design philosophy begins by using the

transistor not as a simple switch but as an analog device
capable of performing computation. This allowsVLSI
designers to increase the level of integration by employing
simple, nonlinear computation elements working collectively
to perform a specific task. This design strategy is widely
used in focal plane arrays (optical sensors) for enhancing
pattern recognition [35]. One of the research goals is to
mimic these designs at microwave frequencies to form a
signal processing layer at the plane of radiation collection (or
transmission) to improve antenna beam pattern recognition.
However, the design, fabrication, and testing of microwave
active antennas requires a substantial investment of time
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Fig. 11. CMOS nonlinear array designed and fabricated in a
0.35-�m process (TSMC). The chip layout shows several 1-D
arrays (stacked) on the bottom portion of the chip.

and money. Fabrication of a monolithic antenna operating
in the gigahertz range can cost $50 000 or more. With many
physics and design questions yet to be answered, scaling
the nonlinear design down to audio frequencies allows the
use of affordable VLSI foundry services. As a result, the
experiments reported here use low-frequency (kHz)VLSI
to test prototype nonlinear array designs.

Arrays of nonlinear oscillators have been designed and
fabricated using a number of different CMOS processes.
Scalable design rules are used to minimize the difficulties in-
volved with moving the design between different processes.
However, all the results presented in this section are obtained
from a 0.35- m CMOS design fabricated using the TSMC
process. Fig. 11 shows the general layout of the design. The
chip contains several rows of 20 elements each stacked on
top of each other (right half of layout). Each row consists of
a 1-D array of coupled nonlinear oscillators employing local
linear coupling. The entire array is partitioned for different
sizes of arrays varying from 20 to 80 elements.

Sections V-B and V-C discuss the unit cell for the non-
linear array. The unit cell is based on a modified second-order
section with an the adjustable wide linear range amplifier
(WLA) as its fundamental building block [36]. An analyt-
ical model of the unit cell is developed and then related to
the to the van der Pol system. Sections V-E and V-F review
the experimental methodology and compare measured re-
sults to simulation predictions. The goal of the experimental
VLSI work is to characterize unit cell parameters to match

the equations of motion for the weakly nonlinear van der Pol
oscillator and to demonstrate a proof of concept for nonlinear
beam forming and beam steering techniques.

B. van der Pol Oscillator as Array Unit Cell

The van der Pol oscillator, represented by (36), is an ex-
cellent choice for the unit cell because it exhibits many of
the behaviors that are required for nonlinear beam steering
and beam forming, including the weakly nonlinear phase and
amplitude dynamics described in (2) and (3). The van der
Pol equations in standard form is clearly two dimensional,
meaning that its state in time is fully described by two vari-
ables. In order to construct a unit cell from transconductance
amplifiers requires reducing the second-order ODE into two

Fig. 12. Block diagram of the nonlinear oscillator design. The
design is a modified second-order filter and is constructed from
amplifiers that have adjustable linear regions as well as operational
current levels. The circuit operates as a nonlinear oscillator by
employing the inherent nonlinear qualities of the feedback amplifier
q. The amplifiers� and� typically operate in the linear regime.

equivalent single-order ODEs, (37) and (38). Voltages now
represent the state variables

(36)

(37)

(38)

(39)

The unit cell is based on a second-order filter (second-
order section [34]) show schematically in Fig. 12. The unit
cell differs from a more traditional filter by employing the
nonlinear qualities of the transconductance amplifier. Typi-
cally this is accomplished by making the linear range of the
feedback amplifier (labeled in Fig. 12) narrow relative to
the feedforward amplifiers ( and ). To accommodate
the need for this adjustable nonlinearity, the WLA allows the
width of the linear transconductance region and bias current
to be varied. The design is based on an above-threshold dif-
ferential pair, whose currents are renormalized by diodes and
a below-threshold differential pair.

For the WLA, the linear range and bias current of each
amplifier is an accessible parameter set byand . In par-
ticular, the parameter sets a bias current (overall operating
current) that follows a similar transfer curve to a subthreshold
CMOS transistor. As a result, there is an exponential relation-
ship between the input voltage and the output current .
This allows the oscillator to function at low current levels
while at the same time running at frequencies that span many
orders of magnitude.

Equation (40) models the WLA

(40a)

(40b)

(40c)

The parameters, , , and are dependent on the fabri-
cation process and are fixed. The process-dependent param-
eters were measured from a test amplifier fabricated on the
0.35- m chip: , V, V , and

A. The parameter is a dimensionless
quantity.
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Fig. 13 shows example measurements from a test amplifier
for two different values of and (solid lines). These mea-
surements were made using a source-measure unit (Keithley
236) (SMU) capable of sourcing a voltage and accurately
measuring current at a node. The output of the amplifier
was connected to the inverting input and held at a fixed
voltage of 1.7 V. The output current was measured as a func-
tion of the input voltage (see inset of Fig. 13). The dashed
lines show the predicted response using (40a) and the mea-
sured system dependent parameters. Equation (40) for the
WLA does not capture all the experimental features, most
notably the undesirable voltage and current offsets.

C. Unit Cell Description

Using Kirchhoff’s law and Fig. 12 as a guide, a set of equa-
tions (41) and (42) describing the unit cell are derived. The
output current from the respective amplifiers in Fig. 12 are

, , and . The system equations of motion are given
by

(41)

(42)

To simplify the analysis, the equations of motion are re-
cast into dimensionless form by a change of variables. Sub-
stituting into (41) and (42) yields (43) and (44)

(43)

(44)

Assuming and are linear amplifiers and functions
in a weakly nonlinear region, the feedback currentcan be
expanded to third order. Finally, scaling time by the factor

and writing the parametersand in terms of the
experimental parameters , , , and , (45) and (46),
yields the familiar van der Pol oscillator (36)

(45)

(46)

In the unit cell model, the fabrication-dependent param-
eters for and are assumed identical, allowing the os-
cillator operating frequency to be set directly by the scaling
time. In the van der Pol equation, controls the strength
of the nonlinear term, determines the stability of the oscil-
lator, and defines the region where the phase model is valid
( ). The system amplitude dynamics is controlled
by . There is now a one-to-one correspondence between the
unit cell equations of motion and the van der Pol equation.
Although and allow direct comparison to the van der Pol
oscillator, they are functions of all the transconductance am-
plifier parameters , , , and . Ultimately, control
over the amplifier’s accessible parameters is set by, ,

, and .

Fig. 13. Wide linear range amplifier measurements compared to
model predictions. The design of the WLA allows experimental
control over the linear transconductance region as well as
the overall bias current level. The figure shows experimental
measurements (solid lines) from a test amplifier on the 0.35-�m
chip for two different values ofV andV , which set the width of
the linear region and the saturation levels, respectively. The dotted
lines show the predicted curves from the amplifier model.

D. Modeling the Nonlinear Array

Given the measurable process dependent parameters, ,
, and , the system can be modeled using the reduced ana-

lytical form of (43) and (44). By directly integrating (45),
the feasibility of using the experimental system as a non-
linear oscillator array capable of demonstrating steering can
be explored. Plots from numerical simulations are shown in
Fig. 14. In the simulations, the frequency of the boundary el-
ements are detuned by adjusting their bias currents via the
parameter . The figure shows that the ideal system is ca-
pable of demonstrating the beam steering effect.

In the experimental system, local linear coupling is
achieved by using two additional amplifiers in the design
of the nonlinear oscillator. Each oscillator has an additional
amplifier for measuring the difference between its left and
right nearest-neighbor voltages, in this case, and to
provide a proportional current feedback. In terms of the
model equations, the 1-D array can be represented by (47)
and (48). For local linear coupling, the size of the linear
region of the coupling amplifiers is assumed to be large
compared to the feedback amplifier

(47)

(48)

A 20-element chain is numerically simulated using the
above equations along with measured process-dependent pa-
rameters. Fig. 14 illustrates a time series. In the figure, the
intensity level represents the value of for each oscillator
as a function of time. At , the oscillators have a random
distribution of initial conditions. They quickly synchronize to
an oscillating pattern with equal phase distribution between
oscillators. At s, the parameter for each oscil-
lator is set across a gradient. At s, the gradient is re-
versed. The array quickly settles to a new nonuniform phase
distribution. The curvature in phase distribution is due to the
fact that the bias current of the WLA is exponentially depen-
dent on the parameter , reflected in an exponential change
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Fig. 14. Numerical simulation of coupled 20-element array. The
frequencies of the boundary elements are detuned to generate the
phase gradient. The intensity level represents the valueV for each
oscillator as a function of time. Att = 0, the oscillators have a
random distribution of initial conditions. They quickly synchronize
to an oscillating pattern with zero phase difference between
oscillators. Att = 2:4 s, the parameterV for each oscillator is set
across a gradient so thatV = 0:705 andV = 0:695. The
other system parameters areV = 1:2, V = 0:72, V = 0:68,
V = 1:2, V = 0:68. At t = 4:8 s the gradient is reversed. The
array is quick to settle to new phase distributions.

in natural frequency. This mimics the design of the experi-
mental array. Despite the drawbacks of this design feature,
the numerical model captures the qualitative features of fre-
quency and phase synchronization. In the figure, ,

, , .

E. Experimental Design and Interface

Initial results are limited to tests from chips containing
20-element arrays, a test amplifier, and a single unit cell. The
test amplifier and unit cell were used to characterize the fab-
rication process.

One of the problems of analog IC design is obtaining
access to a large number of state variables given a limited
number of pins. A common solution for this problem is to
time-multiplex the desired signals to a small number of pins.
In measuring the state of a large array of coupled oscillators
such multiplexing is further complicated by the need to
measure relatively small phase differences between the each
oscillator, which requires fast access to each node in the
array.

Fig. 15. Scanning circuitry block diagram. In the style of Mead
et al., we use a row column selection scheme that incorporates
horizontal and vertical shift registers and differential current mode
output was used. An external operational amplifier is used to
convert the scanned current into a measurable voltage.

A simple scheme for time-multiplexing is to sequentially
scan every element in the array, that is, to do a linear
scan of the whole array, row by row. This is implemented
by shift registers on the periphery of the array and pass
devices for each measured variable, both in each element
and on each row. Given the required scanning speeds, a
differential current scanning method [37] is used, where
currents are switched between lines at identical voltages,
thus eliminating the capacitive loading effects.

The problem remains of translating the state variables,
node voltages, into a current representation suitable for
output. With the addition of one transistor, the output
current from the WLA can be duplicated. The resulting
measurement is the differential input voltage to the amplifier
multiplied by a gain factor. The source voltage of the current
mirror determines the gain. For these experiments the output
of the feedback amplifiers are mirrored, making
and the measured quantities (see Figs. 12 and
15).

For additional flexibility on layout reuse, and at a min-
imum increase in layout size, the differential scan currents
are multiplexed yet again at the edge of the array, leaving the
final connection to the dummy voltage line at a single point
just before leaving the chip. A single external data line and
two clock lines directly drive the shift-registers. This allows
row first or column first scanning or simultaneous readout
using an external operational amplifier to convert the cur-
rent into a measurable voltage. This scheme is illustrated in
Fig. 15.

A certain amount of flexibility is desired from the elec-
tronic interface to the chip. Ideally all system parameters
are accessible and all state variables can be measured in-
stantaneously without complicating the process of experi-
mentation. For simplicity, all the complications of operating
the scanning circuitry have been abstracted with a group of
simple commands that are interpreted by a microcontroller.
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(a) (b)

Fig. 16. Numerical and experimental phase space measurements.
(b) Example experimental phase space diagram compared with
(a) one generated using the model system. Significant amplifier
offset, which is evident in the experimental plot, is the result of
parameter mismatch between transistors in the design. In both plots
V = 1:2, V = 0:7, V = 0:72, andV = 0:68.

Separate interface cards were used for analog-to-digital con-
version (ADC) and digital-to-analog conversion (DAC).

A microcontroller was used to interpret commands from
the personal computer (PC), control the scanner clock and
data lines for row–column selection, and signal the PC when
the scanned output current is ready for measurement. On
the PC side, communication with the microcontroller (Mi-
crochip PIC16C84) is handled via input/output (I/O) ports on
the DAC card (National Instruments 6052E). Commands are
received as interrupts on a digital I/O port. The commands are
then interpreted as modes. For example, in one mode the mi-
crocontroller scans the state of the entire array. Alternatively,
there is a mode for scanning individual rows in the array and
a mode for selecting individual elements. When state vari-
ables are being scanned from the array, the data acquisition
card receives a trigger signal from the microcontroller each
time a new value is available for measurement.

F. Experimental Measurements

Phase space measurements were made on a unit cell that
enables direct comparison between the experimental mea-
surements and the numerical predictions of the model, al-
leviating the need to convert the scanned currents into the
state variables and . Fig. 16 depicts an example experi-
mental phase space diagram (right), compared with one gen-
erated using the model system (left). The two plots compare
well quantitatively. A significant and undesirable quality of
the physical system is amplifier offset due to parameter mis-
match between transistors in the design. This is evident in
the offset in the experimental plot. In both plots ,

, , and .

Examining the Jacobian of the model can make predic-
tions of the nonlinear oscillator’s behavior. The Jacobian for

the reduced nonlinear oscillator, represented by (37)–(39), is
shown in (49)

(49)

The eigenvalues of the Jacobian evaluated at the origin
determine the stability of the fixed point. The traceand
determinant are given by (50)

(50)

For the reduced model, which is an amplitude and time-
scaled van der Pol oscillator, the trace is , and is
given in terms of the experimental parameters by (45). For
this system the determinant is 1, so the fixed point dynamics
are limited to stable and unstable spirals and nodes and un-
stable spirals and nodes [38]. The fixed point behavior of the
numerical model is mapped by the stability diagram shown
in Fig. 17(a). In the figure the linear amplifier parameters
are , . Stability is determined by the
parameters and of the feedback amplifier. Regions
of different colors represent different dynamic behavior. Red
indicates stable fixed point behavior, where . White in-
dicates unstable spirals, where . Blue indicates an
unstable node, where . In the diagram the onset of os-
cillation is at the border between the red and white regions.
The weak nonlinear behavior of the reduced system, which
can be approximated by a phase and amplitude model, is de-
fined by the region of parameter space where .

Similar plots for the experimental system are shown in
Fig. 17(b) and (c). The experimental parametersand
are the same as in Fig. 17(a). The experimental state space di-
agrams are also defined by the same range of values for
and . The diagrams are made by plotting the standard de-
viation of a time series measurement of for each value of

and , keeping in mind the amplitude of oscillation in
the reduced system is also determined by the spatial scaling
parameter , which is a function of all the system parameters.

Qualitatively the diagrams agree with the theoretical pre-
dictions in that the boundary separating the regions of stable
fixed point behavior and oscillation is similar in all the dia-
grams. The most significant difference between the two ex-
perimental diagrams is the specific location of the boundary
region. Because the weakly nonlinear region of parameter
space is relatively narrow, any variation between elements in
the array results in operation outside this region. The theory
is predicated on the weakly nonlinear description of the van
der Pol oscillator and the current unit cell design while pro-
viding proof of concept, is not ideal.

Despite the parameter variation in the unit cell design, the
20-element 1-D arrays chip were able to demonstrate fre-
quency and phase synchronization and beam steering with
strong nearest-neighbor coupling (Fig. 18). Unfortunately,
variation in the fabrication process had a negative effect on
the operation of the array. For example slight variation in the
system parameters, such as the parameters, , and
used in the numerical model, can cause a wide variety of be-
havior for a common global system parameter, such asand
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Fig. 17. (a) Analytical stability diagram and (b) and (c) experimental state space diagrams. The
stability diagram represents a variety of fixed point behaviors for the reduced system. Red indicates
a stable fixed point(� < 0). White indicates unstable spirals(0 < � < 2). Blue indicates an
unstable node(� > 2). The experimental state space diagrams (b) and (c) are measured from
array elements at row 4, column 7 and row 9, column 6, respectively. The diagram is made by
measuring the standard deviation of the measured currentI plotted as a function ofV andV .
The most significant difference between the two experimental diagrams is the specific location of
the boundary region. Mismatch between oscillators (i.e., offsets) results in a number of elements
exhibiting strong vice weak nonlinear behavior.

Fig. 18. Experimental beam pointing in a 1� 20 analog VLSI array. Frequency and phase
synchronization using strong nearest-neighbor coupling. The natural running frequency of each
element is set along a gradient, so the top element in the array has a natural frequency that is less than
the natural frequency of the bottom element. With strong coupling, all the elements synchronize to a
common frequency with a constant phase difference between oscillators.

. This effect is dominated by the system’s exponential de-
pendence on the process dependent parameteras evident
in the phase space diagrams in Fig. 16 and the state space
diagrams in Fig. 17(b) and (c).

In order to perform coherent phase and frequency synchro-
nization, it was necessary to employ strong coupling between
oscillators. Nevertheless, beam pointing in a coupled array

of nonlinear oscillators was clearly demonstrated. The nat-
ural frequencies were tuned with the parameter, along
a gradient, so the top element in the array has a natural fre-
quency that is less than the natural frequency of the bottom
element. With strong coupling, all the elements synchronize
to a common frequency with a constant phase difference be-
tween oscillators.

MEADOWS et al.: NONLINEAR ANTENNA TECHNOLOGY 895



VI. SUMMARY

It was demonstrated how to exploit the interactions be-
tween coupled, nonlinear elements to produce a desired far-
field radiation pattern. In particular, sum and difference beam
pattern steering along with amplitude tapering for sidelobe
reduction were addressed. To this end, the response of a cou-
pled, nonlinear oscillator array to adjusting various system
parameters was explored. A nonlinear beam steering array
was realized using analog microelectronics.

This novel approach indicates the ability to utilize the in-
herent, interactive dynamics of the phased array to achieve
performance similar to that obtained by conventional tech-
niques.
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